

Ministerium für Bildung

SCHRIFTLICHE ABITURPRÜFUNG 2023

Berufliches Gymnasium Technik
Schwerpunkt: Informationstechnik
Erhöhtes Anforderungsniveau
Variante B
Einlesezeit: 30 Minuten Bearbeitungszeit: 330 Minuten
Aufgabenkomplex 1: Objektorientierte Programmierung
Aufgabenkomplex 2: Netzwerke
Hiermit bestätige ich meine Auswahlentscheidung:
Datum und Unterschrift des Prüflings

Die Fachhochschule Wernigerode möchte für Schüler und Studenten ein flexibles und skalierbares Netzwerktrainingszentrum einrichten, in welchem die Installation und die Konfiguration von Betriebssystemen, Anwendungen im Netzwerk und die Administration von Netzdiensten trainiert werden kann. Dabei sollen diese sowohl lokal auf den vorhandenen Arbeitsstationen und den Network Attached Storage Servern (NAS-Server) als auch virtualisiert auf speziellen Servern eingerichtet werden können. Das Trainingszentrum soll sich nahtlos in die bereits vorhandene IT-Umgebung der Fachhochschule integrieren und dessen Serverzentrum nutzen, jedoch ansonsten abgetrennt vom Fachhochschulnetz betrieben werden.

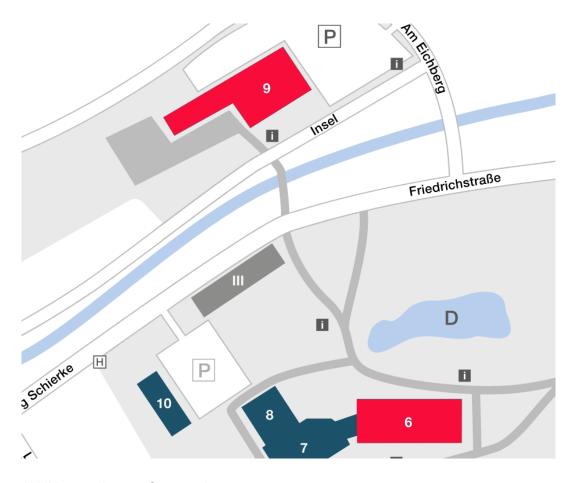


Abbildung 1: Auszug Campusplan

Quelle: https://www.hs-harz.de/dokumente/extern/Campus/Campusplan_Wernigerode.pdf

Aufgabenkomplex 1: Objektorientierte Programmierung

Im Zusammenhang mit der Einrichtung von Computernetzwerken sind stets auch ökonomische Aspekte in Bezug auf die Anschaffung und den Betrieb der Komponenten des Netzwerkes zu berücksichtigen. Darüber hinaus werden im Vorfeld zunehmend auch ökologische und energetische Aspekte betrachtet. Dafür benötigt man spezielle Programme, beispielsweise zur Abschätzung und Auswertung von Kosten, insbesondere Energiekosten. Zur Modellierung dieser Problemsstellung ist die Entwicklung geeigneter Klassen für die einzelnen Netzwerkkomponenten wünschenswert.

In einem Computernetzwerk werden aktive Komponenten wie beispielsweise Router und passive Komponenten wie beispielsweise Netzwerkkabel unterschieden, wobei in beiden Fällen der Komponentenname, der Anschaffungspreis und das Anschaffungsjahr stets von Interesse sind.

Bei aktiven Komponenten sind mehrere Werte zur Energieverbrauchsermittlung bedeutsam. Dazu gehören die (veränderlichen) Gesamtbetriebsstunden, die Leistungsaufnahme im Normalbetrieb und die Leistungsaufnahme im Standby Betrieb. Das Verhältnis – wie viele Stunden eines Tages eine aktive Komponente im Normalbetrieb und wie viele Stunden diese im Standby Betrieb arbeitet kann durch einen Standby Faktor beschrieben werden, dessen Werte zwischen 0 und 1 liegen. Beispielsweise könnte ein Drucker den Standby Faktor 0,875 besitzen, d.h. zu 7/8 der Gesamtbetriebsstunden im Standby und folglich zu 1/8 der Gesamtbetriebsstunden im aktiven Druckbetrieb gewesen sein. Für den Energieverbrauch in Wh einer Komponente gilt:

Verbrauch = Verbrauch_{Standby} + Verbrauch_{Normalbetrieb}

Die Energiekosten hängen vom Verbrauch der Komponente in kWh und dem Arbeitspreis des Versorgers in Cent je kWh ab.

Der Energieverbrauch soll für den gespeicherten Gesamtbetriebsstundenwert der aktiven Komponente innerhalb der Klasse berechenbar sein. Weiterhin soll in der Klasse der Energieverbrauch auch für einen als Parameter übergebenen Betriebsstundenwert berechenbar sein. Für den in der Klasse gespeicherten Gesamtbetriebsstundenwert soll eine einfache Erhöhung durch Hinzufügen weiterer Stunden möglich sein.

Einige aktive Komponenten erfordern das Führen weiterer Eigenschaften, die andere aktive Komponenten jedoch nicht haben. Dazu werden kaufmännisch üblicherweise Faktoren genutzt. Bei Druckern ist beispielsweise die Verwendung eines Verbrauchskostenfaktors sinnvoll, der das Verhältnis der Verbrauchskosten zum Anschaffungspreis für die gesamte Nutzungsdauer des Druckers angibt (Beispielwert: 3,1).

1.1 Entwickeln Sie aus den obigen Angaben einen geeigneten Klassenentwurf in Form von UML-Klassendiagrammen einschließlich der Angabe der Klassenbeziehungen. Dabei können aus Gründen der Übersichtlichkeit alle Zugriffsmethoden auf die Attribute (get, set) weggelassen werden. Begründen Sie Ihren Entwurf in sprachlich zusammenhängender Form. Gehen Sie dabei lediglich auf grundsätzliche Designüberlegungen wie Klassenbeziehungen und die Zuordnung der Attribute und Methoden auf die Klassen ein.

16 Punkte

1.2 Implementieren Sie Ihren Entwurf aus *Aufgabe 1.1*. Speichern Sie die Lösungen in einem Unterordner "Aufgabe12". Vergeben Sie aussagekräftige Dateinamen.

33 Punkte

1.3 Ein erster Test von Teilfunktionalitäten soll anhand eines Objektes Drucker erfolgen. Das Objekt soll dabei zur Vereinfachung mit fiktiven festen Werten erzeugt werden.

11 Punkte

Entwerfen Sie eine benutzerfreundliche Oberfläche, welche für einen gegebenen Drucker den Energieverbrauch in Wh und die Verbrauchskosten in Euro berechnet, wenn der Benutzer die Betriebsstunden und den Arbeitspreis (z.B. 48,95 Cent je Kilowattstunde) eingibt. Speichern Sie Ihre Lösung in einem Unterordner "Aufgabe13".

Aufgabenkomplex 2: Netzwerke

Die technische Infrastruktur des Netzwerktrainingszentrums erstreckt sich auf zwei Gebäude innerhalb des Campusbereiches (*siehe Abbildung 1*). Das Serverzentrum befindet sich im Erdgeschoss des Gebäudes G09 im Raum 08. Das geplante Netzwerktrainingszentrum soll im Gebäude G06 eingerichtet werden und sich dort über zwei räumlich getrennte Großraum-Laboreinheiten erstrecken, die sich im dritten Obergeschoss Raum 307 (Laboreinheit 2) und im Erdgeschoss Raum 002 (Laboreinheit 1) befinden.

Für beide Laboreinheiten sind stationär ein Drucker und ein NAS vorgesehen, die per Kabel mit dem Netzwerk verbunden sind. In Laboreinheit 1 sollen alle weiteren netzwerkfähigen Geräte nach Bedarf drahtlos mit dem lokalen Netz verbunden werden, wobei die Adressvergabe automatisch erfolgen soll und aus organisatorischen Gründen mindestens 300 Adressen bereitgestellt werden sollen. In Laboreinheit 2 sind 20 Arbeitsstationen als stationäre kabelgebundene Netzwerkeinheiten vorgesehen.

Im Serverzentrum werden für das Netzwerktrainingszentrum zwei Server für virtuelle Betriebssysteme und Anwendungen, ein DNS-Server, ein Web-Server und ein FTP-Server bereitgestellt (Serverpool). Der Web- und der FTP-Server sollen dabei auf einem gemeinsamen Host laufen. Die Domäne trägt den Namen fh-wernigerode.de und verwaltet zunächst den Web-Serverdienst und den FTP-Serverdienst. Für das Serverzentrum ist die Netzwerkadresse 194.130.0.0 /24 vorgegeben.

Für die drei Einheiten Laboreinheit 1, Laboreinheit 2 und Serverpool sollen logisch getrennte Netzwerkbereiche genutzt werden, wobei jedoch deren Kommunikation untereinander gewährleistet sein muss und nach Bedarf beschränkt werden kann. Die Verbindung zwischen den Häusern soll redundant erfolgen.

2.1 Die Planungskommission hat für die technische Umsetzung die notwendigen Vorgänge und deren Dauer abgeschätzt (Anlage 2.1). Das Projekt soll am 08. Mai 2023 starten. Entwickeln Sie daraus einen vollständigen Netzplan. Sie können dazu die Vorlagematrix in Anlage 2.3 nutzen und dieses Blatt heraustrennen. An Feiertagen sowie samstags und sonntags wird nicht am Projekt gearbeitet. Kennzeichnen Sie eindeutig den kritischen Pfad und geben Sie das Datum der Übergabe an. Nutzen Sie den Kalenderauszug (Anlage 2.2).

14 Punkte

2.2 Erstellen Sie eine übersichtliche Dokumentation, die alle aktiven Komponenten des Trainingszentrums und die zugehörigen aktiven Komponenten des Serverzentrums zusammenstellt (IP-Adressen und Gerätenamen). Die Gerätenamen müssen dabei exemplarisch nur für Laboreinheit 1 vergeben werden und sollen die Gerätelokalisierung widerspiegeln. Gleichartige Geräte an einem Standort können dabei geeignet zusammengefasst werden. Stellen Sie Ihre prinzipielle Vorgehensweise bei der Planung der Komponenten des Netzwerkes in einer sprachlich geschlossenen Form dar.

23 Punkte

Simulieren Sie das Netzwerk einschließlich Serverzentrum mit allen erforderlichen Komponenten und Funktionalitäten mit der Software Filius.

Öffnen Sie dazu die Datei 2023_ITE_anlagen_B_filius.fls. Der erfolgreiche Zugriff auf den Web-Serverdienst und den FTP-Serverdienst ist zu testen. Speichern Sie die Lösung unter dem Dateinamen Aufgabe22.fls.

Hinweise zu Filius: Sowohl bei den Arbeitsstationen als auch bei den Druckern beschränken Sie sich auf jeweils ein Gerät je Labor. Für den Access-Point ist ersatzweise das Switch-Symbol zu verwenden.

2.3 Im Zusammenhang mit regelmäßigen Aktualisierungen auf den Clients ist eine automatische zeitgesteuerte Übertragung von Datenbeständen wünschenswert. Eine bewährte und leicht handhabbare Technik ist dabei die Nutzung des Protokolls "FTP". Die dafür notwendigen Befehle können dann beispielsweise in einem Programm genutzt werden.

Erstellen und testen Sie eine geeignete Befehlssequenz, welche die Datei apfel.txt vom FTP-Server zur Arbeitsstation in Laboreinheit 1 herunterlädt. Notieren Sie diese Sequenz und kommentieren Sie die benutzten Befehle.

Hinweis: Mit dem Kommando help kann im FTP-Terminal eine Liste aller Befehle angezeigt werden. Mit dem Kommando help Befehlsname wird eine Hilfestellung zu einem speziellen Befehl angezeigt.

2.4 Im Netzwerktrainingszentrum werten Studenten und Schüler die Kommunikationsabläufe der Datenpakete zu Lernzwecken aus. Ein solcher Kommunikationsablauf liegt in *Anlage 2.4* und ein Speicherauszug eines Datenpaketes in *Anlage 2.5* vor.

Untersuchen Sie den dargestellten Kommunikationsablauf und erläutern Sie diesen unter Bezug auf die Zeilen 15 bis 21. Gehen Sie dabei auch auf die angezeigten "Bemerkungen/Details" ein.

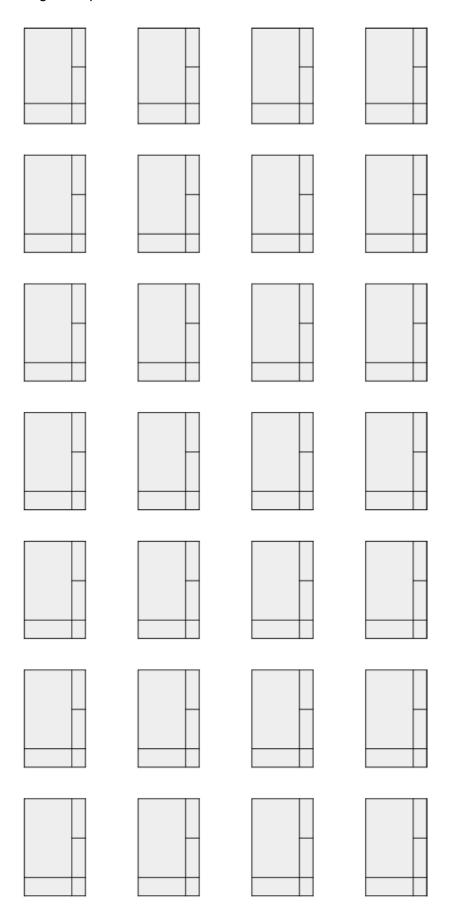
Überprüfen Sie, ob das in *Anlage 2.5* dargestellte Datenpaket zu diesem Kommunikationsablauf gehören könnte und ermitteln Sie die typischen Adressangaben auf der Netzwerkschicht und der Transportschicht sowie das Kommando auf der Anwendungsschicht. Nutzen Sie dazu die in der *Anlage 2.6* dargestellten Informationen zu den ausgewählten Kommunikationsprotokollen.

6 Punkte

17 Punkte

Anlagen

Anlage 2.1: Vorgangsliste zur Einrichtung des Netzwerktrainingszentrums


ID	Kürzel	Vorgangsbezeichnung	Dauer in Tagen	ID Vorgänger
Α	PLAN	Planungsarbeiten	4	-
В	BEST HW	Bestellabwicklung aller Hardwarekomponenten	10	А
С	BEST SW	Bestellabwicklung Spezialsoftware	4	А
D	MONTAGE	Montage zusätzlicher technischer Anschlüsse und Leitungen	2	В
Е	INST SW	Softwareinstallationen und Konfigurationen auf allen Clients	4	В
F	AUFBAU	Aufstellen und Anschließen der stationären Geräte	1	D, E
G	EINR NAS	Einrichten und Testen der NAS- Geräte	2	В
Н	EINR SERV	Konfigurationsplanung, Einrichten und Testen der Server	6	B, C
I	INTEGR	Integration der Server in das Netzwerk und Testläufe	2	F, G, H
J	TECH DOKU	Anfertigung einer technischen Dokumentation	4	Н
K	TEST ÜBERG	Abschlusstest und Übergabe	2	l, J

Anlage 2.2: Kalenderauszug aus dem Jahr 2023

			MAI			
Mo	Die	Mi	Do	Fr	Sa	So
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Sonn- und Feiertage sind in blau dargestellt

Anlage 2.3: Vorlage Netzplan

Anlage 2.4: Kommunikationsablauf (Paketverfolgung unter Filius)

Zeit	Ouelle	Ziel	Protokoll	Schicht	Bemerkungen / Details
0	19:46:54.260 194.130.0.7:37802	194.130.0.2:21	TCP	Transport	SYN, SEQ: 13.000.000
9:46:54.488 1	194.130.0.2:21	194.130.0.7:37802	TCP	Transport	SYN, SEQ: 9.000.000, ACK: 13.000.001
99	9:46:54.489 194.130.0.7:37802	194.130.0.2:21	TCP	Transport	SEQ: 13.000.001, ACK: 9.000.001
99	19:46:54.809 194.130.0.2:21	194,130,0,7:37802		Anwendung	verbunden mit 194.130.0.2 220 Filius ftp-Server
6	19:46:54.809 194.130.0.7:37802	194.130.0.2:21	TCP	Transport	SEQ: 13.000.001, ACK: 9.000.048
2	19:47:20.402 194.130.0.7:37802	194,130,0,2;21		Anwendung	USER ftpuser
26	19:47:20.626 194.130.0.2:21	194.130.0.7:37802	TCP	Transport	SEQ: 9.000.048, ACK: 13.000.013
66	19:48:12.699 194.130.0.2:21	194,130,0,7:37802		Anwendung	226 Uebertragung vollstaendig
30	19:48:12.730 194.130.0.7:37802	194.130.0.2:21	TCP	Transport	SEQ: 13.000.053, ACK: 9.000.464
86	19:48:12.898 194.130.0.2:27919	194.130.0.7:45974	TCP	Transport	SEQ: 17.000.346, ACK: 18.000.002
54	19:48:12.954 194.130.0.2:27919	194.130.0.7:45974	TCP	Transport	FIN, SEQ: 17.000.346
55	19:48:12.955 194.130.0.7:45974	194.130.0.2:27919	TCP	Transport	SEQ: 18.000.002, ACK: 17.000.347
90	19:48:18.290 194.130.0.7:37802	194,130,0,2;21		Anwendung	QUIT
16	19:48:18.516 194.130.0.2:21	194.130.0.7:37802	TCP	Transport	SEQ: 9.000.464, ACK: 13.000.057
72	19:48:18.572 194.130.0.2:21	194.130.0.7:37802		Anwendung	221 Auf Wiedersehen
19:48:18.573	194.130.0.7:37802	194.130.0.2:21	TCP	Transport	SEQ: 13.000.057, ACK: 9.000.483
73	19:48:18.773 194.130.0.7:37802	194.130.0.2:21	TCP	Transport	FIN, SEQ: 13.000.057
86	19:48:18.998 194.130.0.2:21	194.130.0.7:37802	TCP	Transport	SEQ: 9.000.483, ACK: 13.000.058
54	19:48:19.054 194.130.0.2:21	194.130.0.7:37802	TCP	Transport	FIN, SEQ: 9.000.483
35	19:48:19.055 194.130.0.7:37802	194.130.0.2:21	TCP	Transport	SEQ: 13.000.058, ACK: 9.000.484

Anlage 2.5: Speicherauszug eines Ethernet-Frames

Zeilen-Nr.					Ву	/tec	grup	per	ı							
0000	58	2a	f7	с5	83	с0	a4	сЗ	f0	86	1d	39	08	00	45	10
0010	00	47	ff	16	40	00	40	06	b7	5c	c0	a 8	02	88	d9	a0
0020	e7	5c	bf	30	00	15	с5	ба	b8	15	b0	7с	75	f4	80	18
0030	01	f6	84	67	00	00	01	01	80	0a	a4	71	2e	1c	a0	8f
0040	a0	9d	53	54	4f	52	20	50	65	70	70	69	6е	6f	31	2e
0050	4a	50	47	0d	0a											

Die 8-Byte lange Präambel zu Beginn und der 4-Byte lange Trailer (FCS) am Ende des Ethernet-Frames sind hier weggelassen.

Anlagen 2.6: Informationen zum Aufbau ausgewählter Kommunikationsprotokolle

Anlage 2.6.1: Aufbau eines Ethernet-Frames

Präambel	Ziel-MAC-Adresse	Quell-MAC-Adresse	Тур	Daten	FCS
8 Byte	6 Byte	6 Byte	2 Byte	46 bis 1500 Byte	4 Byte

Anlage 2.6.2: Aufbau eines IPv4-Headers

0	4	8	12	16	20	24	28	31	Bit
Version	IHL		TOS		1	Total Length			
	Identif	ication		Flags		Fragment Off	fset		
TTL Protocol Header Checksum									
			Sou	urce Addre	ess				
			Desti	nation Add	dress				
			Options an	d Padding	(optional)				

Quelle: https://tools.ietf.org/html/rfc791

Anlage 2.6.3: Aufbau eines TCP-Headers

0	4		8 12	16	20	24	28	31
		Source	Port		D	estination Port		
			Se	quence Numl	ber			
	Acknowledgement Number							
Data C	Offset	Reserved	Flags			Window		
		Check	sum		ι	Jrgent Pointer		
			Op	tions (option	al)			

Quelle: https://tools.ietf.org/html/rfc793

Hinweis: 1. Halb-Byte des Data-Offsets · 4 = Headerlänge in Bytes

Anlage 2.6.4: Aufbau eines UDP-Headers

0	4	8	12	16	20	24	28	31	Bit
	S	Source Port			De	stination Port			
		Length				Checksum			

Quelle: https://www.ietf.org/rfc/rfc768

Anlage 2.6.5: Ausgewählte Portnummern und zugehörige Dienste

Portnummer	Dienst
1	ICMP
6	TCP
17	UDP
20,21	FTP
53	DNS
80	HTTP
143	IMAP

Quelle: https://www.ietf.org/rfc/rfc1700